

Beowulf Case Study

Parallelization of 6S for the Generation of
VIIRS Snow/Ice Algorithm Look Up Table

on the Vortex Linux Cluster

Al Danial
Northrop Grumman Information Technology—IIS

R10/1328, One Space Park, Redondo Beach, CA 90278, USA

March 4, 2004

Abstract

Raytheon/ITSS asked the NPOESS Models and Simulations team to deliver a satellite
radiance look-up table (LUT) as part of the VIIRS instrument Snow Cover algorithm
work. The computer code that generates the look up table, 6S1, requires ten hours of run
time on a fast Sun workstation [Appendix. A] to produce results for one snow type and
VIIRS band combination or “case”. Thirty two case runs were required in a time frame
of one day. Although look up table generation is amenable to parallel processing, 6S was
not written to run on a parallel computer. To relieve the schedule pressure, the Fortran
source code to 6S was modified to run on the NPOESS Linux cluster ‘vortex’. Run time
for a single case was reduced from ten hours on the Sun to eight minutes on the sixty four
node Linux cluster, 'vortex'. Run time for all thirty two cases, requiring an estimated 320
hours (thirteen days) on the Sun workstation, has been reduced to less than five hours on
the Linux cluster.

Science Background

Measurement of snow cover and snow pack properties is vital to the prediction of water
supply and flood potential. Due to the high albedo of snow, measurements of snow cover
are also very important for monitoring global climate change. Monitoring of sea ice

1 6S is “Second Simulation of the Satellite Signal in the Solar Spectrum” developed by Eric Vermote from
the University of Maryland; D. Tanre and J.L. Deuze from Laboratoire d'Optique Atmospherique, URA
CNRS 713, Universite' des Sciences et Technologies de Lille; and J.J. Morcrette from the European Centre
for Medium Range Weather Forecast, UK.

extent is of vital importance for navigational safety and measurements of sea ice age and
extent are valuable for weather forecasting and monitoring of global climate change.

The NPOESS/VIIRS Snow Cover algorithm will result in two products to meet the
objectives of providing measurements of snow cover and snow pack properties:
1. Global binary snow/no snow cover mask Environmental Data Record
2. Global snow cover fraction Environmental Data Record
The VIIRS Sea Ice Age algorithms will result in a Sea Ice Age Environmental Data
Record.

The VIIRS Snow Cover and Sea Ice Age algorithm is scheduled to be delivered by
NGST in December 2004. Both the Snow and Ice algorithms depend on pre-computed
LUT’s that relate various surface, atmospheric and optical parameters to the observed
satellite radiances.

Satellite radiance look up tables and test data sets to evaluate the performance of the
algorithms are currently being developed. A provisional LUT is due by the second week
of March 2004. An effort has been underway for the past two weeks by Dr. Julienne
Stroeve of the University of Colorado, and Dr. Anne Nolin of Oregon State University to
generate a provisional LUT table of theoretically computed radiances at satellite level for
a given set of surface and atmospheric conditions using the 6S radiative transfer code.
For each snow type the 6S code iterates over a range of solar and satellite view angles
and atmospheric aerosol loadings.

Parallelization of 6S

Impediments to Parallel Solution
Lihong Wang of the NPOESS Models and Simulations team has run LUT generators in
parallel on the NPOESS Linux clusters so it seemed that the 6S-based LUT effort should
also be able to take advantage of the clusters. Robert Mahoney explained there are two
problems: this version of 6S was not written to run on parallel computers, and the binary
input files used by 6S were generated on Sun workstations. Sun and Intel CPU's use
different byte orders to store integer and real data, so the binary input files generated by
on the Sun workstation cannot be read by the Intel x86-based Linux compute nodes.

Binary I/O
Of the two problems, the binary file incompatibility was first perceived to be the harder
to solve. Byte-swapping programs can be written but they take time to develop and
debug and are only useful for a given file format. A search on google.com quickly
yielded a valuable piece of information: Portland Group compilers—which we use on
the NPOESS Linux clusters—have an option, -byteswapio, which will generate code
for an Intel-based Linux machine that reads and writes binary files intended for "big-
endian" workstations.

The 6S Fortran code was compiled on the head node of the vortex cluster using the
Portland Group pgf77 compiler and the -byteswapio switch. We were pleasantly
surprised to see the switch worked as advertised. The Linux executable running on the
little-endian Intel P4's read the Sun-generated, big-endian binary files without difficulty.

Parallelizing 6S
Although 6S was developed to run on conventional computers, we knew that by changing
the ranges of loops over the independent variables (solar zenith angle, viewer zenith
angle, and relative azimuth) we could alter the code to run on a parallel machine by
giving multiple processors different combinations of variables to work with. The 6S loop
limits are hard-coded in the Fortran source so our options were to either generate a
unique executable for each processor, or modify the code to read loop limits from the
command line or an input file. Here is actual code from 6S's main.f:

 479 c solar zenith angle loop
 480 do 5555 isza=1,40
 481 asol=ACOS(cos_sza(isza))*180./pi
 482 c viewing zenith angle loop
 483 do 6666 ivza=1,40
 484 avis=ACOS(cos_sza(ivza))*180./pi
 485 phi0=0.
 486 c relative azimuth angle loop
 487 do 7777 irel=1,37
 488 phi0=relaz(irel)

The loop ranges of 1 to 40 (do 5555), 1 to 40 (do 6666), and 1 to 37 (do 7777)
yield 59,200 combinations of angles. As we have more than 40 compute nodes at our
disposal, the outer loops were ‘flattened’ and their loop variables remapped. Instead of
three nested loops over 1 to 40, 1 to 40, and 1 to 37 iterations we had two nested loops:
the outer loop going from 1 to 40*40, and the unmodified inner loop on irel going
from 1 to 37. The loop variables isza and isva corresponding to the original triple
nested loops were remapped as shown on lines 486 and 487:

 480 nIS = 40
 481 nIV = 40
 482
 483 c solar zenith angle loop + viewing zenith angle loop
 484 do 5555 jj=1, nIS*nIV
 485
 486 isza = int((jj-1) / nIV) + 1
 487 ivza = mod((jj-1) , nIV) + 1
 488
 489 asol=ACOS(cos_sza(isza))*180./pi
 490
 491 avis=ACOS(cos_sza(ivza))*180./pi
 492 phi0=0.
 493 c relative azimuth angle loop
 494 do 7777 irel=1,37
 495 phi0=relaz(irel)

Note the absence of the do 6666 loop.

The outer loop over the new variable jj spans 1600 (nIS*nIV = 40*40) interations
which fits nicely on 64 compute nodes: 64*25 = 1600 so each compute node does 25
passes of the jj loop.

At this point we modified the code further by replacing line 484

 484 do 5555 jj=1, nIS*nIV

with

 484 do 5555 jj=JJ_START, JJ_END

where the new variables JJ_START and JJ_END can either be taken from the command
line, read from an input file, or hard-coded for 64 separate instances of the executable.
Regardless of the approach the net result would be that compute node 1 would run with
 do 5555 jj=1, 26
compute node 2 would run with
 do 5555 jj=26,50
et cetera, until node 64 which runs with the last 25 cases:
 do 5555 jj=1576,1600

Perl Scripts for Creating Executables, Submitting Jobs, Collecting Results
While it is cleaner to expand the Fortran code to accept command line arguments or file
inputs for the jj loop start and end values, it was actually much easier to create 64 hard
coded executables using Perl commands to edit a file template in-place. The Perl
approach meant that no time would be spent writing and testing additional Fortran code
needed to handle the command line or input file parsing.

A small Perl script [Appendix B] was written to generate 64 executables where the only
difference between executables was the starting and ending values for the jj do-loop.
Executables were named using the convention "sixs_XX" where XX is a number from
01 to 64. An executable's suffix number matches the compute node to which the
executable is submitted. For example sixs_09 would be submitted to compute node
"msca09".

A second Perl script [Appendix C] was written to copy to each compute node a
compressed tar file containing the 6S binary input files (40 MB when uncompressed) as
well as the compute-node-specific executable, then to start the run on that node.

A third Perl script [Appendix D] was written to harvest the output data from each node
and reassemble them in correct order into a single file.

Code Modification Effort
It took about three hours discover and test the –byteswapio option to the Portland
Group compiler, study the relevant portions of the 6S Fortran code, flatten the loops,
come up with the index mapping functions, and write and test the three Perl scripts.

Performance
The Linux cluster beats the Sun workstation at two levels: single node performance is
better, and more nodes are available to tackle the problem. Note that while both the Sun
workstation and the Linux compute nodes have dual CPU's, the 6S code is unable to take
advantage of the second processor on either platform.

Single Node Performance
A single node of the Linux cluster runs the 6S code 50% more quickly than the Sun.
Timings on unloaded machines to compute eight passes of the inner loop are
 Sun 4.54 seconds
 Linux 3.06 seconds
The same optimization switch, "-O", was used on both Sun and Portland Group
compilers. No additional optimization levels were investigated.

Aggregate Cluster Performance
One compute node on the Linux cluster can find its portion (40*40*37/64 = 925 angle
combinations) of the solution for a complete case in 7 minutes 12 seconds. Total solution
time for all 64 compute nodes is longer—8 minutes 2 seconds—since it takes 50 seconds
to distribute the input data and submit the 64 jobs from the head node, and another 4
seconds to collect and reassemble the results.

Appendix A: Hardware and Compiler Specifications

Sun workstation
 Name lorien
 Model Sun Fire 280R
 RAM 8 GB
 CPU dual sparcv9, 1.2 GHz
 OS SunOS v5.8, 64 bit
 compiler Sun WorkShop 6 update 2 FORTRAN 77 5.3 Patch 111691-06

 2002/07/23
 command f77 -O -Dsun -c <file.f>

Linux cluster
 name vortex
 model IBM x335
 # nodes 64
 compiler Portland Group pgf77 4.0-2
 command pgf77 -O -Dlinux -byteswapio -Wl,-Bstatic -c <file.f>

 compute nodes:
 RAM 2 GB
 CPU dual Intel P4 Xeon, 2.8 GHz
 OS MSC.Linux (kernel 2.4.18-9)

Appendix B: Perl Script to Create Executables

#!/usr/local/bin/perl -w
use strict;

Albert Danial Mar 2, 2004

Create a unique sixs executable for each processor in a cluster.
An executable has hardcoded loop limits defined in main.f.
The file main-template.f is used as the template to create the
individual main.f files.

my $nIS = 40;
my $nIV = 40;
my $sixs = "sixs";
my $template = "main-template.f";

die "unable to read $template" unless -r $template;

print "How many processors (nIS=$nIS nIV=$nIV) ? ";
chomp(my $nCPU = <STDIN>);
die unless $nCPU =~ /^\d+/ and $nCPU > 0;

my $iter_per_node = int($nIS*$nIV/$nCPU);
my $left_over = $nIS*$nIV - $nCPU*int($nIS*$nIV/$nCPU);

if ($left_over) {
 printf "%d node(s) get %d iterations; ", $left_over, $iter_per_node + 1;
 printf "%d node(s) get %d iterations;\n", $nCPU-$left_over, $iter_per_node;
} else {
 printf "Even split: each of %d processors gets %d iterations\n",
 $nCPU, $iter_per_node;
}
sleep 1;

my $n = 0;
foreach my $node (0..($nCPU-1)) {

 unlink $sixs if -f $sixs;

 my $start_jj = $n + 1;
 my $end_jj = $start_jj + $iter_per_node - 1;
 if ($node < $left_over) {
 ++$end_jj;
 }
 $n = $end_jj;
 printf "node %2d: %4d -> %4d (%3d cases)\n",
 $node+1, $start_jj, $end_jj, end_jj-start_jj+1;

 system "cp $template main.f";
 system "perl -pi -e 's/JJ_START/$start_jj/' main.f";
 system "perl -pi -e 's/JJ_END/$end_jj/' main.f";
 system "make";

 die "failed to create $sixs exe" unless -x $sixs;

 my $new_exe = sprintf("sixs_%02d", $node+1);
 rename $sixs, $new_exe;
 printf "Created $new_exe\n";
}

Appendix C: Perl Script to Submit Jobs

#!/usr/local/bin/perl -w
use strict;

Albert Danial Mar 2, 2004

Submit jobs to each node for which there is a sixs executable.
The executables must have been created earlier with the script
Generate_sixs_exes

opendir(DIR, ".");
my @exes = grep(/^sixs_\d\d$/, readdir(DIR));
closedir(DIR);
die "Could not find any sixs_xx executables in this directory\n" unless @exes;

print "\n", join(" ", @exes), "\n";
print "\nUse these executables? y/n\n";
chomp(my $ans = <STDIN>);
die unless $ans eq "y";

foreach my $exe (@exes) {

 my $node_number = $exe;
 $node_number =~ s/sixs_//;
 my $node = "msca" . $node_number;

 print "submitting $exe to $node\n";

 system "rcp sixs_data.tar.bz2 $node:/scratch/s116493";
 system "rcp $exe $node:/scratch/s116493";
 system "rsh $node \"cd /scratch/s116493; tar jxf sixs_data.tar.bz2\"";
 system "rsh -n $node \"cd /scratch/s116493; nohup ./$exe \" \& ";

}

Appendix D: Perl Script to Collect Results

#!/usr/local/bin/perl -w
use strict;

Albert Danial Mar 2, 2004

my $solution_file = "/home/s116493/mahoney/reflect.dat_M1_1000_od50";

opendir(DIR, ".");
my @exes = grep(/^sixs_\d\d$/, readdir(DIR));
closedir(DIR);
die "Could not find any sixs_xx executables in this directory\n" unless @exes;

print "\n", join(" ", sort @exes), "\n";
print "\nGet data generated by these executables? y/n\n";
chomp(my $ans = <STDIN>);
die unless $ans eq "y";

unlink $solution_file if -f $solution_file;

foreach my $exe (sort @exes) {

 my $node_number = $exe;
 $node_number =~ s/sixs_//;
 my $node = "msca" . $node_number;

 print "Getting solution from $node\n";

 system "rcp $node:/scratch/s116493/reflect.dat_M1_1000_od50 refl.$node";
 system "cat refl.$node >> $solution_file";
 unlink "refl.$node";

}

